Part Number Hot Search : 
U1GU44 W9825 1205DH LD7261 B0110 PC1470H TPC84 HEF4019B
Product Description
Full Text Search
 

To Download CA3080 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  fn475 rev.6.00 page 1 of 11 jan 13, 2017 fn475 rev.6.00 jan 13, 2017 CA3080, CA3080a 2mhz, operational transcond uctance amplifier (ota) datasheet the CA3080 and CA3080a types are gatable-gain blocks which utilize the unique oper ational-transconductance- amplifier (ota) concept described in application note an6668, ?applications of the CA3080 and CA3080a high- performance operational tr ansconductance amplifiers?. the CA3080 and CA3080a types have differential input and a single-ended, push-pull, class a output. in additi on, these types have an amplifier bias input which may be used either for gating or for linear gain control. thes e types also have a high output impedance and their transconductance (g m ) is directly proportional to the amplifier bias current (i abc ). the CA3080 and CA3080a types are notable for their excellent slew rate (50v/ ? s), which makes them especially useful for multiplexer and fast unity-gain voltage followers. these types are especially applicable for multiplexer applications because power is consumed only when the devices are in the ?on? channel state. the CA3080a?s characteristics are specifically controlled for applications such as sample-hol d, gain-control, multiplexing, etc. features ? slew rate (unity gain, compen sated) . . . . . . . . . 50v/ ? s ? adjustable power consumption . . . . . . . . . . . . 10 ? w to 30 ? w ? flexible supply voltage range . . . . . . . . . . . . ? 2v to ? 15v ? fully adjustable gain . . . . . . . . . . . . . . . . .0 to g m r l limit ? tight g m spread: - CA3080. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2:1 - CA3080a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6:1 ? extended g m linearity . . . . . . . . . . . . . . . . . . . 3 decades applications ? sample and hold ? multiplier ? multiplexer ? comparator ? voltage follower pinouts CA3080 (pdip, soic) top view part number information part number (brand) temp. range ( o c) package pkg. no. CA3080ae -55 to 125 8 ld pdip e8.3 CA3080am (3080a) -55 to 125 8 ld soic m8.15 CA3080am96 (3080a) -55 to 125 8 ld soic tape and reel m8.15 CA3080e 0 to 70 8 ld pdip e8.3 CA3080m (3080) 0 to 70 8 ld soic m8.15 CA3080m96 (3080) 0 to 70 8 ld soic tape and reel m8.15 1 2 3 4 8 7 6 5 + v+ nc inv. input v- non-inv. input nc output amplifier bias input - o b s o l e t e p r o d u c t n o r e c o m m e n d e d r e p l a c e m e n t co n t a ct o u r t ec h n i ca l s u p p o r t c e n t e r at 1- 88 8- in t e r s il o r w w w .i n t er s il.c o m / t sc
CA3080, CA3080a fn475 rev.6.00 page 2 of 11 jan 13, 2017 absolute maximum ratings thermal information supply voltage (between v+ and v- terminal) . . . . . . . . . . . . . 36v differential input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5v input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v+ to v- input signal current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1ma amplifier bias current (i abc ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 2ma output short circuit duration (note 1). . . . . . . . . . . . . no limitation operating conditions temperature range CA3080 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 o c to 70 o c CA3080a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -55 o c to 125 o c thermal resistance (typical, note 2) ? ja ( o c/w) ? jc ( o c/w) pdip package . . . . . . . . . . . . . . . . . . . 130 n/a soic package . . . . . . . . . . . . . . . . . . . 170 n/a maximum junction temperature (plastic package) . . . . . . . 150 o c maximum storage temperature range . . . . . . . . . -65 o c to 150 o c maximum lead temperature (soldering 10s) . . . . . . . . . . . . 300 o c (soic - lead tips only) caution: stresses above those listed in ?abs olute maximum ratings? may cause permanent dam age to the device. this is a stress o nly rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. notes: 1. short circuit may be applied to ground or to either supply. 2. ? ja is measured with the component mount ed on an evaluation pc board in free air. electrical specifications for equipment design, v supply = ? 15v, unless otherwise specified parameter test conditions temp CA3080 CA3080a units min typ max min typ max input offset voltage i abc = 5 ? a25-0.3--0.32mv i abc = 500 ? a25-0.45-0.42mv full - - 6 - - 5 mv input offset voltage change i abc = 500 ? a to 5 ? a25-0.2- -0.13mv input offset voltage temp. drift i abc = 100 ? afull----3.0- ? v/ o c input offset voltage sensitivity positive i abc = 500 ? a 25 - - 150 - - 150 ? v/v negative 25 - - 150 - - 150 ? v/v input offset current i abc = 500 ? a 25 - 0.12 0.6 - 0.12 0.6 ?? input bias current i abc = 500 ? a25-25-25 ? a full - - 7 - - 15 ? a differential input current i abc = 0, v diff = 4v 25 - 0.008 - - 0.008 5 na amplifier bias voltage i abc = 500 ? a 25 - 0.71 - - 0.71 - v input resistance i abc = 500 ? a 25 10 26 - 10 26 - k ? input capacitance i abc = 500 ? a, f = 1mhz 25 - 3.6 - - 3.6 - pf input-to-output capacitance i abc = 500 ? a, f = 1mhz 25 - 0.024 - - 0.024 - pf common-mode input-voltage range i abc = 500 ? a 25 12 to -12 13.6 to -14.6 - 12 to -12 13.6 to -14.6 -v forward transconductance (large signal) i abc = 500 ? a 25 6700 9600 13000 7700 9600 12000 ? s full 5400 - - 4000 - - ? s output capacitance i abc = 500 ? a ?? f = 1mhz 25 - 5.6 - - 5.6 - pf output resistance i abc = 500 ? a 25 - 15 - - 15 - m ? peak output current i abc = 5 ? a, r l = 0 ? 25 - 5 - 3 5 7 ? a i abc = 500 ? a, r l = 0 ? 25 350 500 650 350 500 650 ? a full 300 - - 300 - - ? a
CA3080, CA3080a fn475 rev.6.00 page 3 of 11 jan 13, 2017 schematic diagram peak output voltage positive i abc = 5 ? a, r l = ? 25 - 13.8 - 12 13.8 - v negative 25 - -14.5 - -12 -14.5 - v positive i abc = 500 ? a, r l = ? 25 12 13.5 - 12 13.5 - v negative 25 -12 -14.4 - -12 -14.4 - v amplifier supply current i abc = 500 ? a 25 0.8 1 1.2 0.8 1 1.2 ma device dissipation i abc = 500 ? a 252430 36 2430 36mw magnitude of leakage current i abc = 0, v tp = 0 25 - 0.08 - - 0.08 5 na i abc = 0, v tp = 36v 25 - 0.3 - - 0.3 5 na propagation delay i abc = 500 ? a 25 - 45 - - 45 - ns common-mode rejection ratio i abc = 500 ? a 25 80 110 - 80 110 - db open-loop bandwidth i abc = 500 ? a25-2--2-mhz slew rate uncompensated 25 - 75 - - 75 - v/ ? s compensated 25 - 50 - - 50 - v/ ? s typical applications figure 1. schematic diagram of the CA3080 and CA3080a in a unity -gain voltage follower configuration and associated waveform electrical specifications for equipment design, v supply = ? 15v, unless otherwise specified (continued) parameter test conditions temp CA3080 CA3080a units min typ max min typ max 2 output v + amplifier bias input non- inverting input inverting input 3 5 4 6 7 v- q 4 d 2 q 5 q 6 q 7 q 1 q 2 q 3 d 1 d 4 d 3 q 8 q 11 d 6 q 10 q 9 d 3 5 2 4 7 5pf 1m ? load (scope probe) 3 6 CA3080, a 51 ? 0.01 ? f 0.01 ? f 390pf 300 ? v- = -15v 0.001 ? f 62k ? v+ = 15v + 10k ? - 10k ? ?? ? 15v time (0.1 ? s/div.) output 1v/div. input 5v/div.
CA3080, CA3080a fn475 rev.6.00 page 4 of 11 jan 13, 2017 figure 2. 1,000,000/1 single-con trol function generator - 1mhz t o 1hz note: a square-wave signal m odulates the external sweeping input to produce 1hz and 1mhz, showing the 1,000,000/1 frequency range of the function generator. note: the bottom trace is the sweep ing signal and the top trace is the actual generator output. the ce nter trace displays the 1mhz signal via delayed oscilloscope triggering of the upper swept output signal. figure 3a. two-tone output signal from the function generator figure 3b. triple-trace of the function generator sweeping to 1mhz figure 3. function generator dynamic characteristics waveforms typical applications (continued) 7 4 7 5 4 4 7 6 ca3160 3 2 6 8.2k ? 2 3 2 3 6 5 20pf voltage-controlled current source +7.5v CA3080a 1k ? 1k ? 2m ? 100k ? 7.5v +7.5v symmetry max freq. set external sweeping input +7.5v 10k ? 6.2k ? 500 ? -7.5v min freq. set 4.7k ? -7.5v 0.9 - 7pf c 1 6.2k ? 10 - 80pf c 2 4 - 60pf c 3 + - buffer voltage follower 0.1 ? f 0.1 ? f -7.5v +7.5v 2k ? 10k ? centering 100k ? +7.5v -7.5v +7.5v 430pf 6.8m ? CA3080 + - 30k ? -7.5v 10k ? 50k ? c 5 15 - 115 c 4 4 - 60 high-freq. level adjust 2-1n914 high- freq. shape threshold detector + - freq. adjust 500 ?
CA3080, CA3080a fn475 rev.6.00 page 5 of 11 jan 13, 2017 figure 4. schematic diagram of th e CA3080a in a sample-hold conf iguration figure 5. sample and hold circuit typical applications (continued) 7 4 2 6 5 3 CA3080a + - 2.0k ? 2.0k ? 30k ? 220 ? 0.01 ? f 300pf 3k ? output input 0.01 ? f v- = -15v v+ = +15v 3n138 sample 0v hold -15v storage and phase compensation network slew rate (in sample mode) = 1.3v/ ? s acquisition time = 3 ? s(note) note: time required for output to settle within ? 3mv of a 4v step.   &$$         &$      ,1387   6752%( n ? 1n914 1n914 2k ? +15v -15v 2k ? 200pf 200pf 400 ? 2k ? 2k ? 3.6k ? 30pf +15v -15v 2k ? 100k ? 0.1 ? f 0.1 ? f 0.1 ? f 0.1 ? f 0.1 ? f 0 -15 sample hold simulated load not required
CA3080, CA3080a fn475 rev.6.00 page 6 of 11 jan 13, 2017 top trace: output signal 5v/div., 2 ? s/div. bottom trace: input signal 5v/div., 2 ? s/div. center trace: difference of input and output signals through tektronix amplifier 7a13 5mv/div., 2 ? s/div. figure 6. large signal response and settling time for circuit sh own in figure 5 top trace: system output; 100mv/div., 500ns/div. bottom trace: sampling signal; 20v/div., 500ns/div. top trace: output; 50mv/div., 200ns/div. bottom trace: input; 50mv/div., 200ns/div. figure 7. sampling response for circuit shown in figure 5 figure 8. input and output response for circuit shown in figure 5 figure 9. thermocouple temperature control with ca3079 zero volt age switch as the output amplifier typical applications (continued) 10 2 7 3 CA3080a + - 4 6 5 13 2 6 ca3079 8 4 5 7 9 11 load 120v ac 60hz mt 2 mt 1 5k 4w 50k 6.2k 2k 2k 150k 6.2k 20k 1n914 1n914 r f 100 ? f + - g 8 note: all resistors 1/2 watt, unless otherwise specified. thermocouple
CA3080, CA3080a fn475 rev.6.00 page 7 of 11 jan 13, 2017 figure 10. schematic diagram of the CA3080a in a sample-hold cir cuit with bimos output amplifier top trace: output; 5v/div., 2 ? s/div. center trace: differential comparison of input and output 2mv/div., 2 ? s/div. bottom trace: input; 5v/div., 2 ? s/div. top trace: output 20mv/div., 100ns/div. bottom trace: input 200mv/div., 100ns/div. figure 11. large-signal response for circuit shown in figure 10 figure 12. small-signal response for circuit shown in figure 10 typical applications (continued) 5 2 CA3080a + - 7 4 3 6 5 2 ca3130 + - 4 7 6 3 8 1 input r 1 2k +7.5v -7.5v r 2 2k c 2 r 2 15k 0.1 ? f strobe sample control amplifier c 1 200pf r 3 400 storage and phase compensation -7.5v nulling r 4 2k sample read-out amplifier +7.5v c 3 0.1 ? f c 4 0.1 ? f c 5 156 pf r 5 2k c 6 0.1 ? f r 7 2k output c l e.g. 30pf (typ) sample hold 0v -7.5 (ota) r 6 100k 0 0 0 0 0
CA3080, CA3080a fn475 rev.6.00 page 8 of 11 jan 13, 2017 figure 13. propagation delay test circuit and associated wavefor ms typical performance curves figure 14. input offset voltage vs amplifier bias current figure 15. input offset current vs amplifier bias current figure 16. input bias current vs amplifier bias current figure 17 . peak output current vs amplifier bias current typical applications (continued) input output t plh t phl 7 2 CA3080,a + - 4 5 6 3 out in 51 ? v- = -15v 1n914 1.2m ? i abc = 500 ? a 56k ? v+ = 15v 0 0 -50mv 50mv supply volts: v s = ? 15v 70 o c 125 o c 90 o c -55 o c 25 o c 70 o c 25 o c 125 o c 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 -7 -8 0.1 1 10 100 1000 input offset voltage (mv) amplifier bias current ( ? a) 90 o c -55 o c supply volts: v s = ? 15v -55 o c 25 o c 125 o c 10 3 0.1 1 10 100 1000 input offset current (na) amplifier bias current ( ? a) 10 2 10 1 0.1 0.01 supply volts: v s = ? 15v -55 o c 25 o c 125 o c 10 4 0.1 1 10 100 1000 input bias current (na) amplifier bias current ( ? a) 10 3 10 2 10 1 0.1 0.1 1 10 100 1000 amplifier bias current ( ? a) 10 4 peak output current ( ? a) 10 3 10 2 10 1 0.1 supply volts: v s = ? 15v -55 o c 25 o c 125 o c load resistance = 0 ?
CA3080, CA3080a fn475 rev.6.00 page 9 of 11 jan 13, 2017 figure 18. peak output voltage vs amplifier bias current figure 19. amplifier supply current vs amplifier bias current figure 20. total power dissipation vs amplifier bias current figure 21. transconductance vs amplifier bias current figure 22. leakage current test circuit figure 23. leakage current vs temperature typical performance curves (continued) supply volts: v s = ? 15v t a = 25 o c load resistance = ? 15 14.5 14 13.5 13 0 -13 -13.5 -14 -14.5 -15 0.1 1 10 100 1000 amplifier bias current ( ? a) v+ om v+ cmr v- om v- cmr peak output voltage (v) common mode inp ut voltage (v) 0.1 1 10 100 1000 amplifier bias current ( ? a) supply volts: v s = ? 15v -55 o c 25 o c 125 o c 10 4 amplifier supply current ( ? a) 10 3 10 2 10 1 0.1 125 o c -55 o c, 25 o c t a = 25 o c v s = ? 15v v s = ? 6v v s = ? 3v 10 5 10 4 10 3 10 2 10 1 device power dissipation ( ? w) 0.1 1 10 100 1000 amplifier bias current ( ? a) 0.1 1 10 100 1000 amplifier bias current ( ? a) supply volts: v s = ? 15v -55 o c 25 o c 10 5 10 4 10 3 10 2 10 1 125 o c forward transconductance ( ? s) 2 3 4 6 1 CA3080, a 5 7 36v 0v test point (v tp ) +36v -50 0 25 75 125 temperature ( o c) supply volts: v s = ? 15v 100 10 1 0.1 0.01 v 2 = v 3 = v 6 = 36v 0v -25 50 100 magnitude of leakage current (na)
CA3080, CA3080a fn475 rev.6.00 page 10 of 11 jan 13, 2017 figure 24. differential input current test circuit figure 25. inpu t current vs input differential voltage figure 26. input resistance vs amplifier bias current figure 27. a mplifier bias voltage vs amplifier bias current figure 28. input and output capacitance vs ampli- fier bias current figure 29. output resistance vs amplifier bias current typical performance curves (continued) 5 7 v+ = 15v CA3080, a 2 3 4 6 1 v diff = ? 4v v- = -15v supply volts: v s = ? 15v 25 o c 125 o c 01234 567 10 1 10 2 10 3 10 4 differential input current (pa) input differential voltage (v) supply volts: v s = ? 15v t a = 25 o c input resistance (m ? ) 100 10 1 0.1 0.01 0.1 1 10 100 1000 amplifier bias current ( ? a) supply volts: v s = ? 15v -55 o c 25 o c 125 o c 0.1 1 10 100 1000 amplifier bias current ( ? a) 900 800 700 600 500 400 300 200 100 0 amplifier bias voltage (mv) supply volts: v s = ? 15v 0.1 1 10 100 1000 amplifier bias current ( ? a) 6 5 4 3 2 1 0 7 f = 1 mhz t a = 25 o c input and output capacitance (pf) c i c o 0.1 1 10 100 1000 amplifier bias current ( ? a) 10 4 10 3 10 2 10 1 10 5 output resistance (m ? ) supply volts: v s = ? 15v t a = 25 o c
fn475 rev.6.00 page 11 of 11 jan 13, 2017 CA3080, CA3080a intersil products are manufactured, assembled and tested utilizing iso9001 quality systems as noted in the quality certifications found at www.intersil.com/en/suppor t/qualandreliability.html intersil products are sold by description on ly. intersil may modify the circuit design an d/or specifications of products at any time without notice, provided that such modification does not, in intersil's sole judgment, affect the form, fit or function of the product. accordingly, the reader is cautioned to verify that datasheets are current before placing orders. information fu rnished by intersil is believed to be accu rate and reliable. however, no responsib ility is assumed by intersil or its subsidiaries for its use; nor for any infrin gements of patents or other rights of third parties which may result from its use. no license is granted by implication or otherwise under any patent or patent rights of intersil or its subsidiaries. for information regarding intersil corporation and its products, see www.intersil.com for additional products, see www.intersil.com/en/products.html ? copyright intersil americas llc 2001-2004. all rights reserved. all trademarks and registered trademarks are the property of their respective owners. figure 30. input-to-output capacitance test circuit figure 31. inp ut-to-output capacitance vs supply voltage typical performance curves (continued) 5 7 v+ 2 3 4 v- CA3080, a 0.01 ? f 6 0.01 ? f f = 1 mhz t a = 25 o c 0.06 0.05 0.04 0.03 0.02 0.01 02 4 6 8 1012141618 input - to - output capacitance (pf) positive and negative supply voltage (v)


▲Up To Search▲   

 
Price & Availability of CA3080

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X